HARD

PNIS

We are entering an unprecedented age in baby name flux

Department of American Nomenclature¹, Division of Legal Compliance¹ 1 - PNIS

INTRODUCTION

lederal law requires that, within the first year of their establishment, new publications must publish an article utilizing the United States Social Security database on baby names¹. As a result of this law, articles on baby names have been published in: online blogs [e.g., Prooffreader (link, link, link, link), FlowingData (link, link, link), FiveThirtyEight, Jezebel, Waitbutwhy, nymag, and Fulcrum. Then, there's Freakonomics and babynamewizard which have more baby name articles than there are baby names], academic journals (e.g., Proceedings of the National Academy of Sciences; Proceedings of the Royal Society B; Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies; Proceedings of the 3rd Workshop on Computational Linguistics for Literature; Proceedings of the 5th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases; Proceedings of the 13th ACM International Conference on Modeling, Analysis, and Simulation of Wireless and Mobile Systems; Proceedings of the 16th ACM International Conference on Multimedia; and Academy of Management, *Proceedings*), and an academic journal that seems to have originated as a result of this database². Therefore, in accordance with US Statute 72-4224³, PNIS

3 Well, ok, this also not true, but this is really a continuation of the joke noted in the first footnote. Plus, we're not even sure if

is proud to present our analysis of baby names in the United States.

What exactly have all these previous studies uncovered about our denomination of offspring? Well, we've found out that the popularity of top-ranked names has decreased (Prooffreader, FlowingData, Twenge et al. 2010), boys names that end in 'n' are on the rise (Proofreader), "Jennifer" used to be popular (Jezebel), girls names are more varied than boys names (Li 2012), popular names are less common on frontiers (Varnum and Kitayama 2011), and that you can't attend a data visualization or computing conference without running into this dataset.

In choosing our particular research topic, we wanted something unique that no one else had ever studied, or, at the very least, was popular many years ago but has since decreased in popularity. Mostly, this desire stems from the eminent publishability and coolness of novel research papers. Plus, many famous people are choosing really unique research topics and we kind of want to be just like them. Deep inside, though, we're hopeful that the research topic we pick will start a new hip trend.

We've observed that prospective parents are choosing names solely on their uniqueness⁴, which, in our humble opinion, is not the best reason for a name. In the past, inspiration for names has come from politicians, relatives, and stars of the cinema, while current inspiration originates from compass directions, various fruits, or popular tourist destinations. The desire to pay homage to a respected and renowned person has been replaced by the desire to be unique, a most

¹ This is obviously not true. However, the rest of this article is based on real data, making it a true HARD article

² That would be *NAMES: A Journal of Onomastics*, with onomastics meaning the study of proper names (and not the study of masturbation statistics). This journal launched in 1953 and has published such articles as: "Variation in automobile naming", "Is *1069* a name?" and "The stuff of which names are made: a look at the colorful and eclectic namecraft of Lord Dunsany".

the US does statutes (we're also not sure what a statute is). 4 Our source here is a relative of one of the authors that will remain nameless.

disturbing trend. Thus, we've decided to analyze the Social Security (SS) database to see how four different metrics have changed over time: 1) number of unique names, 2) the diversity of names, 3) the evenness of names, and 4) flux, the year-to-year change in name popularity.

Methods

The Social Security Administration of the United States of America has a database containing the frequency of first names of US citizens from 1880 to present (we downloaded the dataset that contains data until 2012). There are several things to note about this dataset:

- SS in the US didn't start issuing cards until 1937⁵, so the data from 1880 to 1937 represents older people (i.e., not newborn) that signed up for SS (probably for employment). So, for example, an entry of 500 Irene's in 1900 in the dataset doesn't mean that 500 baby girls were named Irene in 1900, but that 500 Irene's born in 1900 signed up for SS in 1937. In other words, the data before 1937 is a bit dubious.
- Even for some time after 1937, it's debatable that everyone registered their newborns with the government.
- Gender designations can be a bit wonky at times (see Prooffreader).
- For privacy reasons, the database only gives names with at least 5 entries.
- The database also includes entries such as "Unknown", "Baby", or "Infant", which are too sad to warrant further comment.

The dataset for any particular year is just a list with three columns: Name, Gender (M or F), and Number (corresponding to the number of people having that first name). We first separated the dataset by gender, and then calculated the proportion of each specific name (for instance, in 2012, the proportion of newborn girls named Sophia was 0.0127, or 1.27%). Using this proportion we were able to calculate:

1. **Diversity**. Diversity could just be the number of unique baby names. But, when you have information on the abundance of each name, you can calculate diversity indices, which consider the frequency of each type (i.e., for us, a "type" is any particular name). A high diversity index value indicates that the names are

5 Actually, in November 1936 they started requesting applications from postal workers. evenly spread out (i.e., one name doesn't dominate over all the others). We used the Shannon Index (abbreviated as H'), which is calculated as: $\sum p_i \ln(p_i)$, where p_i is the proportion of the population given a particular name (so, in 2012, $p_{SOPHIA} = 0.0127$).

2. Evenness. This is related to diversity, but is perhaps a bit easier to comprehend because it can only take a value between 0 and 1 and is often thus expressed as a percentage (e.g., a value of 0.75 means that baby names for that particular year were 75% even). Higher numbers indicate names are more spread out, while lower numbers indicate that several names are more dominant. We calculated evenness (abbreviated as J') as: H'/H'_{MAX} , where H'_{MAX} is the natural log of the total number of unique names in that year (so, as you can see, evenness also takes into account the number of baby names per year).

3. Flux. This one's easy: take the proportion of any name in one year, subtract from it the proportion of that name in the very next year, and obtain the absolute value (in other words, don't have any negative numbers). Then just add up all the values for all names to get an overall measure of how much every name changed from the previous year. Large values indicate a lot of change from the previous year.

We calculated these three metrics (and some others self-explanatory ones like number of unique names) for each gender and each year, and then made some cool graphs⁶.

RESULTS

We made six cool graphs, which we'll call Figure 1 (note the shading from 1880 to 1937 to reiterate the dubiousness of that data). Here are some trends that we saw:

Gender: 1) girls consistently have more unique names than boys (top right panel), 2) girls names are more spread out than boys names, or, in other words, more boys share names than do girls (mid left and both bottom panels), 3) girls names consistently go through more year-to-year change than boys (mid right panel).

Historical: 1) the number of unique names has gone up nearly 4-fold (girls) or 3-fold (boys) since the 1930's (top right panel), 2) names of both genders have gotten more spread out, or, in other words,

⁶ US Statute 72-4224 also requires that in any graph made using baby names, all data concerning boys must be represented as light blue, and all data concerning girls must be represented as pink.

Figure 1. Various metrics of American baby names over time. Light blue represents boys and pink represents girls. X-axis denotes year. Gray shading from 1880 to 1937 denotes that SS applications did not begin until 1937.

less names have been dominant over time (mid left and both bottom panels), 3) flux in baby names has steadily increased since the 1930's (mid right panel)

We also put together a table of the names with the biggest gains and losses in proportion for every year and gender (see Appendix). Mostly this table exists so we can marvel about the silly names of the past and see if our parents were hip to the then-current naming trends.

DISCUSSION

Well, first we supported what just about everyone else has found out with this dataset: namely that the distribution of baby names has evened out over the years. In other words, the top-ranked names are losing popularity. In other, other words, fewer babies are being called the same name; there's much more diversity out there. This trend has been recognized by researchers publishing in both academic journals (e.g., Twenge et al. 2010, Li 2012) and blogs (e.g., FlowingData⁷, Fulcrum, Prooffreader). Interestingly, different calculation methods have been used to arrive at the same conclusion: for example, Li (2012) used the Gini index, which is typically used to measure wealth distribution, and Fulcrum used the Herfindahl-Hirschman Index, which is typically used to measure how concentrated a market is (i.e., is there perfect competition or is it a complete monopoly?). We used Shannon's Diversity and Evenness, which are typically used to assess species diversity in different habitats.

So, what's behind this trend? Fulcrum identifies three different possibilities: 1) increased immigration, especially from areas that have little first name overlap with the US, 2) a desire for uniqueness, and 3) the fact that older names die hard (for example, there were still 28 girls named Bertha in 2012). Twenge et al. (2010) also point out increased individualism as a driver of this trend, but question immigration as an important factor, as their models controlled for immigration rate.

All of these explanations probably have some merit, but we would also like to mention that baby name diversity also seems to have risen with the increasing annual temperature of the US (i.e., climate change). In fact, there is a significant positive relationship between average annual temperature of 7 Note that there is a graph in this post that is extremely similar, if not identical, to our Figure 1 mid left panel.

Average Annual Temperature of US (in Fahrenheit) **Figure 2.** Warmer temperatures in the US are positively related to the number of unique names chosen by American parents. Each dot represents one year from 1895 to 2012 (Light blue = boys, pink = girls)

the US (since 1895) and the number of unique male and female names⁸. In fact, for every increase in one degree Fahrenheit, there are 2,191 new male names and 3,127 new female names introduced in the US (Figure 2). Its unknown why hotter temperatures are causing parents to go crazy with baby names⁹, but as the US is expected to warm about 5° F this century, you can expect about another 10 to 15 thousand more baby names that are even dumber than Even, Ever, Zaydin, and Kyler.

REFERENCES

Li W (2012) Analyses of baby name popularity distribution in U.S. for the last 131 years. Complexity 18:44-50.

Twenge J, Abebe EM, Campbell WK (2010) Fitting in or standing out: trends in American parents' choices for children's names, 1880-2007. Social Psychological & Personality Science 1:19-25.

Varnum MEW, Kitayama S (2010) What's in a name? Popular names are less common on frontiers. Psychological Science 22:176-183.

APPENDIX (NEXT PAGE)

Boy and girls names that increased and decreased the most from the previous year.

⁸ *P*-values for both the male and female correlation are
<0.001. *R*² values are not given because they are very weak.
9 Although see here for an interesting hypotheses

Naming and Legal Divisions

Baby Name Flux

	Boys		Girls		1918	Robert	William	Lorraine	Mary
Year	Increaser	Decreaser	Increaser	Decreaser	1919	Robert	Woodrow	Betty	Helen
1881	Chester	Charles	Ethel	Mary	1920	Robert	John	Betty	Anna
1882	Robert	John	Helen	Nellie	1921	Robert	Walter	Betty	Helen
1883	Charles	James	Bertha	Mary	1922	Robert	Warren	Betty	Ruth
1884	Grover	Charles	Pearl	Bertha	1923	Robert	George	Betty	Helen
1885	Albert	William	Elsie	Mary	1924	Robert	Warren	Betty	Helen
1886	Arthur	Grover	Edna	Emma	1925	Richard	John	Gloria	Margare
1887	Joseph	John	Ethel	Minnie	1926	Richard	Calvin	Barbara	Helen
1888	Harry	John	Hazel	Mary	1927	Donald	William	Mary	Helen
1889	Roy	Grover	Ruth	Emma	1928	Herbert	William	Dolores	Helen
1890	Charlie	William	Helen	Mary	1929	Donald	Alfred	Joan	Ruth
1891	Joseph	Frank	Ruth	Alice	1930	Richard	Herbert	Joan	Dorothy
1892	Grover	William	Ruth	Anna	1931	Robert	William	Barbara	Dorothy
1893	Joseph	John	Esther	Mary	1932	Ronald	Robert	Barbara	Betty
1894	Harold	Edward	Marie	Ruth	1933	Franklin	Robert	Barbara	Dorothy
1895	James	Charles	Marion	Mary	1934	Ronald	Franklin	Shirley	Betty
1896	William	John	Helen	Jessie	1935	David	Franklin	Shirley	Betty
1897	James	John	Helen	Anna	1936	Robert	Donald	Carol	Shirley
1898	Dewey	William	Helen	Mary	1937	David	Donald	Barbara	Shirley
1899	Willie	Dewey	Mildred	Ethel	1938	Gary	Donald	Judith	Shirley
1900	James	Dewey	Annie	Anna	1939	David	Donald	Judith	Shirley
1901	Charles	James	Gladys	Annie	1940	Gary	Donald	Linda	Shirley
1902	Robert	Wiliam	Dorothy	Elsie	1941	Ronald	Donald	Linda	Betty
1903	Joseph	Henry	Dorothy	Minnie	1942	Douglas	Donald	Linda	Patricia
1904	Alton	William	Mildred	Grace	1943	Michael	Douglas	Linda	Barbara
1905	Samuel	John	Alice	Florence	1944	Michael	Ronald	Cheryl	Barbara
1906	Joseph	James	Alice	Clara	1945	Michael	Charles	Linda	Mary
1907	James	William	Evelyn	Alice	1946	Michael	James	Susan	Mary
1908	William	Charles	Dorothy	Evelyn	1947	David	Richard	Linda	Carol
1909	James	John	Helen	Anna	1948	Michael	Richard	Deborah	Judith
1910	Willie	William	Mary	Edna	1949	Michael	James	Deborah	Linda
1911	Joseph	Willie	Dorothy	Annie	1950	Michael	John	Deborah	Linda
1912	Woodrow	James	Dorothy	Ethel	1951	Michael	James	Deborah	Linda
1913	Robert	Willie	Helen	Bertha	1952	David	Larry	Debra	Linda
1914	Robert	Woodrow	Dorothy	Edna	1953	Michael	John	Debra	Linda
1915	Robert	John	Ruth	Ethel	1954	Mark	Dennis	Debra	Linda
1916	Robert	Willard	Virginia	Anna	1955	David	Richard	Debra	Mary
1917	Robert	Charles	Virginia	Anna	1956	Mark	David	Karen	Deborah

1957	Mike	Robert	Cindy	Deborah	1985	Kyle	Jason	Brittany	Jennifer
1958	Timothy	James	Tammy	Cynthia	1986	Andrew	Joshua	Whitney	Jennifer
1959	Mark	Michael	Donna	Debra	1987	Justin	Jason	Kayla	Jennifer
1960	Jeffrey	Richard	Lisa	Debra	1988	Justin	Jason	Brittany	Ashley
1961	John	Richard	Lisa	Donna	1989	Ethan	Jason	Brittany	Jessica
1962	Scott	Mark	Lisa	Linda	1990	Jordan	Justin	Taylor	Amanda
1963	Paul	Mark	Lisa	Linda	1991	Dylan	Christopher	Shelby	Brittany
1964	John	Mark	Dawn	Lori	1992	Dylan	Michael	Taylor	Jessica
1965	Christopher	John	Lisa	Mary	1993	Austin	Michael	Taylor	Chelsea
1966	Christopher	John	Michelle	Karen	1994	Austin	Michael	Alexis	Ashley
1967	Michael	James	Melissa	Karen	1995	Austin	Michael	Madison	Jessica
1968	Matthew	David	Jennifer	Mary	1996	Noah	Michael	Madison	Jessica
1969	Jason	Timothy	Jennifer	Lisa	1997	Jacob	Cody	Hannah	Jessica
1970	Jason	David	Jennifer	Lisa	1998	Noah	Christopher	Emma	Jessica
1971	Christopher	David	Jennifer	Lisa	1999	Seth	Michael	Grace	Jessica
1972	Christopher	Scott	Jennifer	Lisa	2000	Ethan	Austin	Trinity	Brittany
1973	Jason	David	Heather	Lisa	2001	Logan	Brandon	Isabella	Brittany
1974	Jason	Robert	Heather	Lisa	2002	Ethan	Jacob	Isabella	Taylor
1975	Joshua	Brian	Amanda	Jennifer	2003	Aidan	Austin	Emma	Ashanti
1976	Jeremy	Michael	Jamie	Michelle	2004	Aiden	Zachary	Ava	Hannah
1977	Joshua	Michael	Kelly	Amy	2005	Landon	Jacob	Ava	Alexis
1978	Nicholas	Jason	Crystal	Amy	2006	Landon	Ryan	Addison	Emily
1979	Joshua	Jason	Amanda	Amy	2007	Jayden	Joshua	Addison	Emily
1980	Justin	Jason	Tiffany	Melissa	2008	Aiden	Christopher	Peyton	Hannah
1981	Brandon	Jason	Jessica	Melissa	2009	Liam	Aidan	Isabella	Hannah
1982	Christopher	Jeremy	Ashley	Melissa	2010	Mason	Joshua	Sophia	Madison
1983	Matthew	Jason	Ashley	Melissa	2011	Mason	Jacob	Harper	Isabella
1984	Joshua	Jason	Ashley	Jennifer	2012	Liam	Jacob	Harper	Chloe